摘要:在2021年成都師范學(xué)院專升本招生簡(jiǎn)章中,明確提出了生物科學(xué)、計(jì)算機(jī)科學(xué)與技術(shù)、數(shù)字媒體技術(shù)等專業(yè)是需要考察高等數(shù)學(xué)I的,為幫助大家找準(zhǔn)復(fù)習(xí)重點(diǎn),有針對(duì)性地突擊拔高,此次整理了成都師范學(xué)院專升本《高等數(shù)學(xué)I》考試大綱,希望對(duì)考生有所幫助~
在2021年成都師范學(xué)院專升本招生簡(jiǎn)章中,明確提出了生物科學(xué)、計(jì)算機(jī)科學(xué)與技術(shù)、數(shù)字媒體技術(shù)等專業(yè)是需要考察高等數(shù)學(xué)I的,為幫助大家找準(zhǔn)復(fù)習(xí)重點(diǎn),有針對(duì)性地突擊拔高,此次整理了成都師范學(xué)院專升本《高等數(shù)學(xué)I》考試大綱,希望對(duì)考生有所幫助~
一、總體要求
本大綱適用于報(bào)考我校理工類各本科專業(yè)(不含數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè))的??茖W(xué)生。
考生應(yīng)理解或了解《高等數(shù)學(xué)》中函數(shù)、極限、連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、向量代數(shù)與空間解析幾何、多元函數(shù)微積分學(xué)、無(wú)窮級(jí)數(shù)、常微分方程以及《線性代數(shù)》的行列式、矩陣、向量、方程組的基本概念與基本理論;掌握上述各部分的基本方法.應(yīng)注意各部分知識(shí)的結(jié)構(gòu)及知識(shí)的內(nèi)在聯(lián)系;應(yīng)具有一定的抽象思維能力、邏輯推理能力、運(yùn)算能力、空間想象能力;能運(yùn)用基本概念、基本理論和基本方法正確地推理證明,準(zhǔn)確、簡(jiǎn)捷地計(jì)算;能綜合運(yùn)用所學(xué)知識(shí)分析并解決簡(jiǎn)單的實(shí)際問(wèn)題。
本大綱對(duì)內(nèi)容的要求由低到高,對(duì)概念和理論分為“了解”和“理解”
兩個(gè)層次;對(duì)方法和運(yùn)算分為“會(huì)”、“掌握”和“熟練掌握”三個(gè)層次。
二、考試范圍及要求
?。ㄒ唬┖瘮?shù)、極限和連續(xù)
函數(shù)
1.理解函數(shù)的概念,會(huì)求函數(shù)的定義域、表達(dá)式及函數(shù)值。會(huì)求分段函數(shù)的定義域、函數(shù)值,并會(huì)作出簡(jiǎn)單的分段函數(shù)圖像。會(huì)建立簡(jiǎn)單實(shí)際問(wèn)題的函數(shù)關(guān)系式。
2.理解和掌握函數(shù)的單調(diào)性、奇偶性、有界性和周期性,會(huì)判斷所給函數(shù)的類別。
3.了解函數(shù)y=f(x)與其反函數(shù)
之間的關(guān)系(定義域、值域、圖像),會(huì)求單調(diào)函數(shù)的反函數(shù)。
4.理解和掌握函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算,熟練掌握復(fù)合函數(shù)的復(fù)合過(guò)程。
5.掌握基本初等函數(shù)及其簡(jiǎn)單性質(zhì)、圖像。
6.了解初等函數(shù)的概念及其性質(zhì)。
極限
1.理解極限的概念,會(huì)求數(shù)列極限及函數(shù)在一點(diǎn)處的左極限、右極限和極限,了解數(shù)列極限存在性定理以及函數(shù)在一點(diǎn)處極限存在的充分必要條件。
2.了解極限的有關(guān)性質(zhì),掌握極限的四則運(yùn)算法則(包括數(shù)列極限與函數(shù)極限)。
3.熟練掌握用兩個(gè)重要極限求極限的方法。
4.了解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量與無(wú)窮大量的關(guān)系。會(huì)進(jìn)行無(wú)窮小量階的比較(高階、低階、同階和等價(jià))。會(huì)運(yùn)用等價(jià)無(wú)窮小量代換求極限。
連續(xù)
1.理解函數(shù)在一點(diǎn)連續(xù)與間斷的概念,會(huì)判斷簡(jiǎn)單函數(shù)(含分段函數(shù))的連續(xù)性,理解函數(shù)在一點(diǎn)連續(xù)與極限存在的關(guān)系。
2.會(huì)求函數(shù)的間斷點(diǎn)及確定其類型。
3.掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會(huì)運(yùn)用零點(diǎn)定理證明方程根的存在性。
4.了解初等函數(shù)在其定義區(qū)間上連續(xù),并會(huì)利用連續(xù)性求極限。
?。ǘ┮辉瘮?shù)微分學(xué)
導(dǎo)數(shù)與微分
1.理解導(dǎo)數(shù)的概念,了解導(dǎo)數(shù)的幾何意義以及函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系,會(huì)用定義判斷函數(shù)的可導(dǎo)性。
2.會(huì)求曲線上一點(diǎn)處的切線方程與法線方程。
3.熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則以及復(fù)合函數(shù)的求導(dǎo)方法,會(huì)求反函數(shù)的導(dǎo)數(shù)。
4.掌握隱函數(shù)以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會(huì)使用對(duì)數(shù)求導(dǎo)法,會(huì)求分段函數(shù)的導(dǎo)數(shù)。
5.了解高階導(dǎo)數(shù)的概念,會(huì)求初等函數(shù)的高階導(dǎo)數(shù)。
6.理解函數(shù)的微分概念及微分的幾何意義,掌握微分運(yùn)算法則及一階微分形式的不變性,了解可微與可導(dǎo)的關(guān)系,會(huì)求函數(shù)的微分。
中值定理及導(dǎo)數(shù)的應(yīng)用
1.了解羅爾中值定理、拉格朗日中值定理及它們的幾何意義。會(huì)用羅爾中值定理證明方程根的存在性。會(huì)用拉格朗日中值定理證明簡(jiǎn)單的不等式。
因部分?jǐn)?shù)學(xué)公式無(wú)法展示,所以為大家上傳了完整的考綱文檔,有需要的考生,可以自取。
關(guān)于2021年成都師范學(xué)院專升本《高等數(shù)學(xué)I》考試大綱,暫時(shí)就介紹到這里,請(qǐng)大家嚴(yán)格根據(jù)考綱的要求,認(rèn)真復(fù)習(xí),對(duì)于試題題型及分值也要提前知曉,提前做好沖刺準(zhǔn)備,預(yù)??忌谒拇▽I究荚囍?,都能取得優(yōu)異的成績(jī)!